
Best Practices for Data Contracts: A 
Comprehensive Guide
This document provides a comprehensive framework for establishing robust data contracts in your organization. It 
covers essential elements from ownership and standards to enforcement and automation, designed to help data 
professionals, engineers, and business stakeholders implement effective data governance. Each section offers 
actionable guidance that can be immediately applied to strengthen data management practices and foster clearer 
communication between data producers and consumers.

Winfried A. Etzel 

DATAWAREHOUSING & BUSINESS INTELLIGENCE SUMMIT

Utrecht 2025



Defining Data Ownership & Responsibility

Data Owners
The individuals or teams with 
authority to approve access and 
usage of specific datasets. They 
make final decisions about the 
data's purpose and handling.

Data Stewards
Subject matter experts who 
maintain data quality and 
ensure proper documentation. 
They implement the data 
owner's policies on a day-to-day 
basis.

Data Custodians
Technical teams responsible for 
storing, securing, and 
processing the data according 
to specifications. They manage 
the infrastructure that hosts the 
data.

A well-crafted data contract must explicitly define ownership and responsibility boundaries. Start by documenting 
who legally and operationally owns the data assets4this could be a specific department, the entire organization, or 
may vary by dataset. Then, identify the individuals or roles responsible for maintaining the data asset.

Effective data contracts include a RACI matrix (Responsible, Accountable, Consulted, Informed) for key data 
management activities. For each dataset, specify who approves changes to structure, who implements those 
changes, who needs to be consulted before modifications, and who should be informed after changes occur. This 
clarity prevents the all-too-common scenario where data issues arise and no one takes ownership of the 
resolution.

Additionally, outline escalation procedures for when data quality issues are discovered. The contract should specify 
timeframes for addressing different severity levels of data problems and define the communication channels for 
reporting these issues.



Specifying Data Standards
Data standards form the backbone of effective data contracts by ensuring consistency and interoperability across 
systems. Your contract should define explicit technical specifications for data exchange, including supported file 
formats (CSV, JSON, Parquet, etc.), character encodings (UTF-8 is recommended), and transmission protocols 
(REST, GraphQL, SFTP, etc.).

Schema definitions must be comprehensive and precise. Document each field with its name, data type, length 
constraints, allowed values or ranges, and nullability rules. For complex data types, include nested structure 
definitions. When applicable, specify the units of measurement and coordinate systems for numerical and spatial 
data. Consider using established schema definition languages like JSON Schema, Apache Avro, or Protobuf to 
formalize these specifications.

Technical Standards

Field names and conventions (camelCase, 
snake_case)

Primary and foreign key definitions

Standard data types and formats for dates, 
currencies, and identifiers

Handling of special characters and escape 
sequences

Metadata Requirements

Business glossary terms and definitions

Data lineage documentation

Refresh timestamps and version information

Data quality scores and confidence metrics

Beyond technical specifications, outline metadata requirements that provide context for the data. This includes 
business definitions, source information, transformation rules, and any relevant classification tags (e.g., PII, 
confidential). Standardized metadata makes data discovery more efficient and helps users properly interpret and 
utilize the data.



Setting Data Access Rules

1
Authentication
Define acceptable authentication mechanisms (OAuth, SAML, API keys) and credential management 
policies.

2
Authorization
Specify role-based access controls, attribute-based permissions, and the principle of least privilege 
implementation.

3
Auditing
Detail logging requirements for all data access activities, including read, modify, and delete 
operations.

Comprehensive data access rules are critical for maintaining security while enabling proper data utilization. Your 
data contract should explicitly define who can access specific datasets or fields within datasets, under what 
circumstances, and for what purposes. Start by categorizing your data consumers into distinct roles with clearly 
defined permissions.

For each role, document the specific operations allowed (read, write, update, delete) at both the dataset and field 
levels. Consider implementing column-level security for sensitive information, where certain roles can see 
aggregated data but not individual records. Include time-based restrictions when appropriate, such as limiting 
access to certain hours or requiring periodic reauthorization.

Detail the technical implementation of these access controls, whether through database permissions, API 
gateways, or federated identity management. Specify acceptable authentication methods and credential 
management practices, including password policies and multi-factor authentication requirements for sensitive 
data.

Most importantly, establish monitoring and audit logging requirements. All access attempts4successful or failed4
should be recorded with timestamps, user identifiers, accessed resources, and operations performed. Define 
retention periods for these logs and procedures for regular access reviews to ensure compliance with the defined 
rules.



Including SLAs for Data Availability & 
Quality

Accuracy Completeness Timeliness Consistency Validity

Service Level Agreements (SLAs) transform data contracts from passive documents into active governance tools. 
They establish measurable expectations for both data producers and consumers. Start by defining availability 
metrics, including uptime percentages (e.g., 99.9%), maintenance windows, and maximum resolution times for 
outages. Be specific about when and how often data will be refreshed or updated, especially for time-sensitive 
operational data.

Quality metrics should address multiple dimensions, including accuracy (percentage of correct values), 
completeness (percentage of non-null values), timeliness (maximum latency from source to consumption), 
consistency (cross-field and cross-dataset validation), and validity (conformance to business rules). For each 
dimension, specify the minimum acceptable thresholds and how they will be measured.

Define explicit error handling procedures, including notification protocols for when quality thresholds are breached. 
Document escalation paths and remediation timeframes based on the severity of quality issues. Consider 
implementing a data quality scoring system that provides consumers with confidence levels for different datasets.

Establish clear consequences for SLA violations, whether they're committed by data producers or consumers. 
These might include remediation plans, review meetings, or in commercial contexts, financial penalties. 
Conversely, include mechanisms for handling exceptional circumstances where SLAs might be temporarily 
adjusted due to system migrations, major business events, or force majeure situations.



Enforcing Compliance & Security

Regulatory Compliance
Identify all applicable regulations 
(GDPR, CCPA, HIPAA) and document 
specific requirements for each 
dataset, including retention periods, 
anonymization techniques, and 
consumer rights processes.

Data Security
Specify encryption standards (at-
rest and in-transit), access controls, 
and security monitoring 
requirements to protect sensitive 
information throughout its lifecycle.

Classification Framework
Establish a data classification 
system that categorizes 
information based on sensitivity 
and business impact, with 
corresponding handling 
procedures for each level.

Regulatory compliance and security requirements must be explicitly documented within data contracts to mitigate 
legal and operational risks. Begin by identifying all relevant regulations that apply to each dataset, considering both 
where the data originates and where it will be used. For international data, address cross-border transfer 
restrictions and localization requirements.

Detail the specific implementation measures required for each regulation, such as consent management for GDPR, 
opt-out mechanisms for CCPA, or de-identification techniques for HIPAA. Include data retention policies that 
specify minimum and maximum storage periods, along with archiving and deletion procedures that maintain 
compliance throughout the data lifecycle.

Document security controls appropriate to the data's sensitivity classification. This should include encryption 
requirements (algorithms and key management), authentication and authorization protocols, and network security 
measures. Specify auditing and monitoring requirements designed to detect potential security breaches or 
unauthorized access.



Including Version Control & Change 
Management

1Change Request
Document proposed schema changes, 
including business justification, impact 

assessment, and backward compatibility 
considerations.

2 Review Process
Outline stakeholder reviews, including 
technical validation, business approval, and 
compliance verification steps.

3Implementation Planning
Schedule deployment windows, prepare 

rollback procedures, and communicate 
timelines to all affected parties. 4 Deployment & Verification

Execute changes with appropriate monitoring 
and post-deployment validation to ensure 
system integrity.

Data structures inevitably evolve as business needs change, making version control and change management 
essential components of data contracts. Establish a formal versioning scheme for your data schemas, such as 
semantic versioning (Major.Minor.Patch), where major changes indicate backward incompatibility, minor changes 
add functionality while maintaining compatibility, and patches represent non-disruptive fixes.

Define a structured change management process that includes request documentation, impact assessment, 
approval workflows, and implementation planning. Specify the stakeholders who must review and approve 
different types of changes, particularly those affecting downstream consumers. Document how schema changes 
will be communicated, including advance notice periods scaled to the potential impact (e.g., 30 days for major 
changes, 7 days for minor ones).

Address technical considerations for schema evolution, including strategies for backward compatibility. Document 
whether field deprecation periods will be observed before removal, how default values will be handled for new 
fields, and whether schema validation will be strict or permissive during transition periods. Consider including 
guidance on using nullable fields versus default values when extending schemas.

Specify the artifacts that must be maintained as part of version control, including schema definition files, data 
dictionaries, transformation code, and validation rules. Detail how these artifacts will be stored, preferably in a 
version control system like Git, and how versions will be tagged and documented for reference.



Automating Contract Enforcement
Automation transforms data contracts from static documentation into active governance tools. For effective 
implementation, integrate validation checks directly into your data pipelines at multiple control points: during 
ingestion, transformation, and before consumption. These automated checks should verify conformance to 
schema definitions, business rules, and quality thresholds defined in the contract.

Deploy a comprehensive monitoring system that continuously tracks compliance with SLAs and other contractual 
requirements. This should include real-time dashboards visualizing data quality metrics, availability statistics, and 
processing times. Implement automated alerting for contract violations, with appropriate severity levels and 
notification channels based on the importance of the affected data and the magnitude of the deviation.

Consider implementing these specific automation techniques:

Schema registries like Apache Avro or Protobuf to enforce schema compatibility across systems

Data quality frameworks such as Great Expectations or dbt tests to validate business rules and constraints

Metadata management platforms to track lineage and enforce documentation requirements

Access control systems integrated with identity management to enforce permission rules

API gateways with rate limiting and quota enforcement for data access endpoints

For maximum effectiveness, make contract compliance visible to all stakeholders. Create scorecard systems that 
rate datasets and data providers based on their adherence to contractual obligations. Use these scores in data 
discovery tools to help consumers assess the reliability of different data sources. By automating enforcement and 
making compliance transparent, you establish accountability and incentivize adherence to best practices.

Remember that automation should be implemented incrementally. Start with your most critical datasets and 
the most important contract provisions, then expand coverage as your processes mature.


