Modern Data Architecture in the Cloud Era

How cloud-native design, decentralized ownership, and metadata-driven automation are shaping tomorrow's data platforms

About Me

Sjoukje Zaal

CTO Data & Al Europe

Insights & Data @Capgemini

Agenda

design principles

Ol O2 O3

Cloud-Native Architecture Data Mesh Data Fabric

Leveraging elastic computing and modular Decentralizing ownership with domain- Connecting systems through metadata

and automation

04

Data Lakehouse Future Trends

Unifying analytics and data science workloads Emerging patterns shaping tomorrow's data landscape

oriented thinking

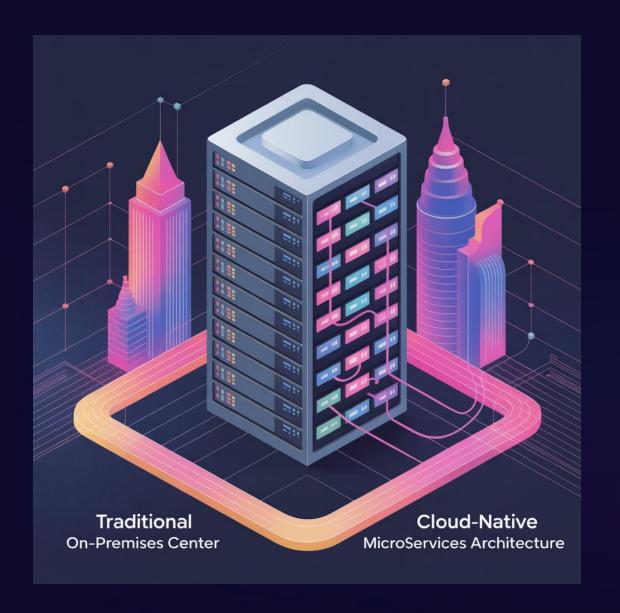
Cloud-Native Architecture

What is Cloud-Native? (Data Context)

Cloud-native data architecture means designing data platforms to take **full advantage of cloud elasticity, automation, and modularity** — from day one.

This doesn't mean just "lifting" your data warehouse into the cloud. It means building:

- Scalable compute clusters that spin up/down as needed
- Serverless data services that react to events
- Modular components connected via APIs or event streams



Benefits of Decoupling Compute & Storage

Cloud-native architectures separate:

- Storage (low-cost, high-availability object storage like S3, ADLS, GCS)
- Compute (on-demand engines like Spark, Presto, BigQuery, Synapse)

This enables you to:

- Run analytics across huge datasets without copying data
- Scale compute workloads independently based on load, team, or SLA
- Save cost by shutting down idle compute



Real-World Example – Containerized Data Platform

The Challenge

Large organization migrating from onprem Hadoop to a cloud-native data platform

The Solution

- Containerized Spark jobs for batch
 ETL
- Kafka and Event Hubs for real-time ingestion
- ML pipelines running in Kubernetes
- Central data lake on object storage

The Results

- Cut data processing costs by 40%
- Reduced pipeline deployment from days to minutes
- Enabled **isolated**, **parallel workloads** on shared data

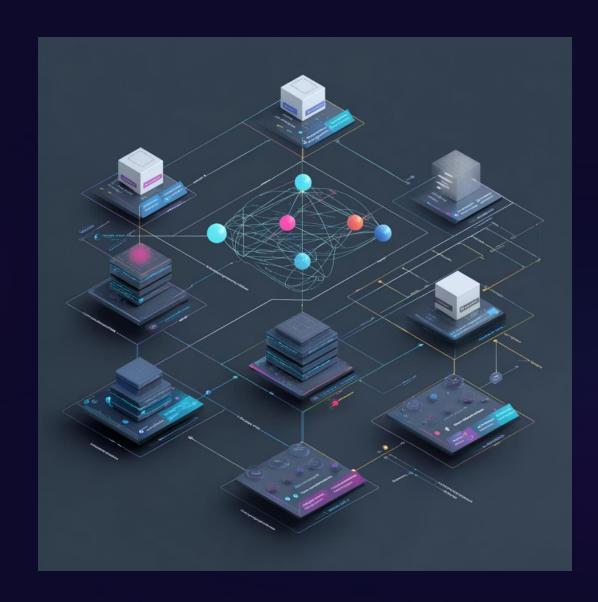
Microservices + Service Mesh for Data Services

In modern data platforms, we break up monolithic ETL or orchestration engines into small, composable services:

- Ingestion services
- Transformation engines
- Feature serving
- Lineage tracking
- Cataloging and discovery

A **service mesh** adds structure to this growing web of services:

- Secure, encrypted communication between sensitive data services
- Fine-grained routing for A/B testing or blue/green pipeline rollouts
- Centralized telemetry and policy enforcement



Cloud Independence – Do's and Don'ts for Data Platforms

In data architecture, cloud independence doesn't mean avoiding cloud services — it means designing for **flexibility and portability** when needed.

DO

- Store data in **open formats** (Parquet, Delta, Iceberg)
- Use **containerized runtimes** for ML and pipelines
- Keep metadata and governance layers separate from vendor tools

DON'T

- Build your data model around proprietary features
- Lock critical business logic into vendor-specific tools
- Sacrifice strategic flexibility for short-term convenience

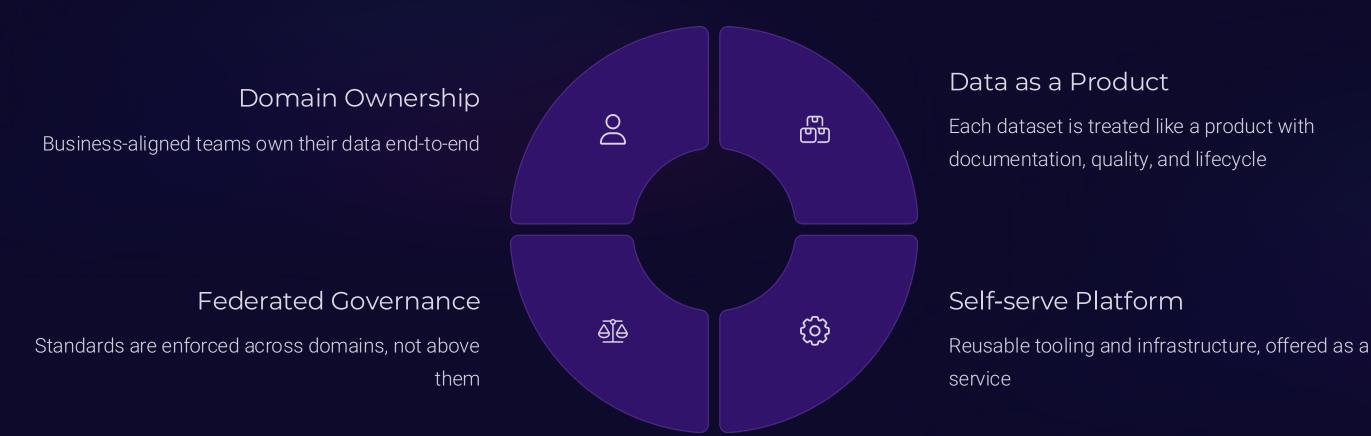
The goal is not "vendor avoidance" — it's making **smart bets** with a clear exit plan.

Data Mesh

What is a Data Mesh?

Data Mesh is a response to a problem we've all seen: Centralized platforms become bottlenecks.

Instead of routing all data through a central team or platform, we shift to a domain-oriented approach — where teams own and operate their own data products.



It's not a tool. It's an operating model.

Centralized vs Decentralized Model

Centralized Model

- One data team handles ingestion, pipelines, governance, and reporting
- Bottlenecks grow as data demand scales
- Business teams depend on others to get insights

Decentralized (Mesh) Model

- Each domain owns the full lifecycle of their data products
- Central teams build shared infrastructure
- Data is closer to those who understand it best

Org Structure & Governance Implications

A Data Mesh will fail without organizational alignment.

Team Structure

- Autonomous data teams aligned to business domains
- Accountable for quality, discoverability, and SLAs
- Blend of business and technical skills

Governance Model

- Central governance becomes federated
- Standards enforced through automated checks
- Enabling teams rather than blocking them

Required Elements

- Clear roles and ownership across domains
- Defined interfaces for metadata, policies, contracts
- Incentives for producing reusable data assets

Without this structure, it becomes chaos. With it, you get scale.

Product Thinking Applied to Data

What does "data as a product" mean in practice?

Think about how we build digital products:

- There's a target audience
- Defined interfaces and documentation
- A clear lifecycle and support model

We apply the same thinking to data:

- Who is this data for?
- Is it reliable, versioned, and well-described?
- Can others discover and use it without the original team?

The Cultural Shift

This is where most transformations fail — the culture.

From Service Provider

- Reactive to business requests
- Focused on completing tickets
- Success = pipeline works

To Product Owner

- Owning outcomes, not just pipelines
- Thinking in SLAs and user experience
- Success = others get value from your data

A fundamental mindset shift: From "How do we centralize and control?" To "How do we scale and enable?"

Data Fabric

Data Fabric vs Data Mesh

Data Mesh

An **organizational model** that:

- Distributes ownership to domain teams
- Encourages product thinking for datasets
- Pushes responsibility to business domains

The "who" and "how"

Data Fabric

A **technology approach** that:

- Connects data across environments
- Discovers and manages metadata
- Automates governance and lineage

The "what" and "where"

They're not competing concepts — they solve different parts of the problem. You can (and should) use both together.

Metadata & Active Metadata

Passive Metadata

Static information about your data:

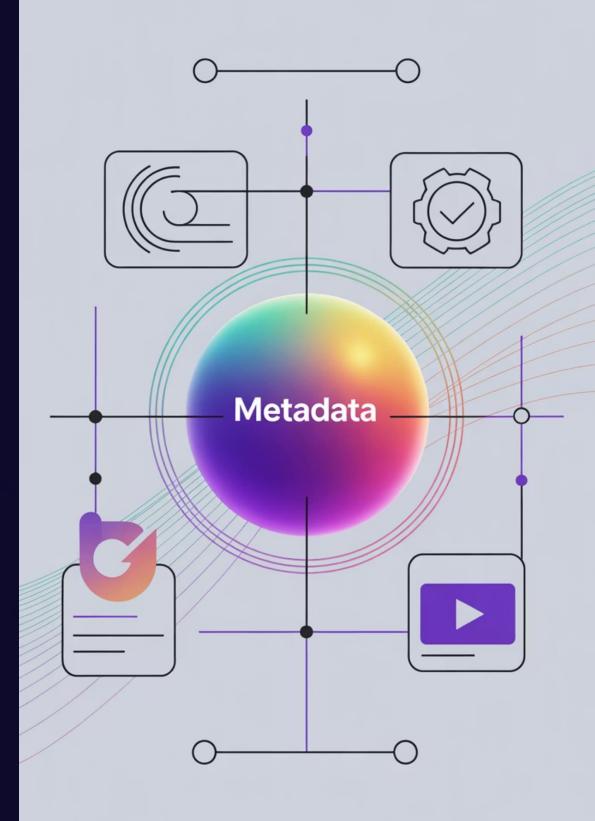
- Schema definitions
- Data types
- Source systems
- Business glossary terms

Active Metadata

Dynamic, real-time signals:

- Usage patterns and popularity
- Quality scores and freshness
- Processing history
- Access patterns and data flows

Active metadata turns your platform from a directory into a **smart, responsive system**.



Governance & Lineage Automation

Manual governance doesn't scale. In a modern fabric architecture, governance is automated and embedded.

Real-time Enforcement

Policies applied at ingestion — not weeks later

Automatic Protection

Sensitive data auto-tagged with access restrictions

End-to-end Lineage

Traceability from dashboard to raw source

Reusable Data Products via Composition

Data Fabric helps accelerate innovation by making data **modular and reusable**.

Instead of building each dataset from scratch:

- Compose new data products by linking existing ones
- Think like LEGO blocks combining sales data with customer
- profiles and churn predictions

This works because:

- Metadata describes how pieces fit together
- The fabric enforces dependencies and access rules

Data Lakehouse

What is a Lakehouse?

The **Lakehouse** is an architectural pattern that combines the best of both worlds:

Data Lake Benefits

- Flexibility and scale
- Support for all data types
- Cost-effective storage
- ML-ready format

Data Warehouse Benefits

- ACID transactions
- Schema enforcement
- Time travel capabilities
- Fine-grained governance

This means you can run traditional BI, real-time streaming, and machine learning — all from one place, without copying data across systems.

Warehouse vs Lake vs Lakehouse

Feature	Data Warehouse	Data Lake	Data Lakehouse
Schema	Strict (predefined)	Flexible or none	Enforced on write/read
Cost	High	Low	Lower
Data Types	Structured only	All types	All data types
BI Support	Strong	Weak	Strong
ML Support	Limited	Strong	Strong
Governance	Built-in	Requires tooling	Native + open formats

The Lakehouse gives you structure where you need it, and flexibility where you don't — without the overhead of running two platforms in parallel.

Delta Lake, Apache Iceberg, Apache Hudi

Lakehouse architectures rely on open table formats that bring structure and performance to object storage.

Delta Lake (Databricks)

- Strong ACID support
- Optimized for Spark
- Popular in enterprise setups

Apache Iceberg (Netflix, Apple)

- Engine-agnostic
- Open community-driven format
- Rich metadata capabilities

Apache Hudi (Uber)

- Optimized for real-time ingestion
- Supports upserts
- Used in high-velocity environments

Each has strengths — but they all bring warehouse-like reliability to your lake.

Unified Storage = Fewer Copies, Fresher Data

Traditional Problem

Data sprawl across multiple systems:

- One copy in the lake for ML
- Another in the warehouse for reporting
- A third in a database for operational use

Leading to:

- Sync delays
- Inconsistent results
- High storage and processing costs

Lakehouse Solution

Multiple engines access the same data:

- BI tools query with SQL
- ML pipelines use Spark
- Dashboards stay fresh automatically

Customer Insights

Use Case – BI + ML on One Platform

1

Retail Company Challenge

Analyze customer behavior across online and in-store purchases

2

Multiple Use Cases

- Dashboards for marketing teams
- Churn prediction models for data scientists
- Streaming updates from transactions

Lakehouse Implementation

3

- Data lands in Delta/Iceberg tables in object storage
- BI analysts use Power BI directly on that table
- Data scientists train models on the same data
- Real-time updates refresh both simultaneously

No duplication. No silos. One platform serving multiple teams.

What's Next?

Al in DataOps – Monitoring and Remediation

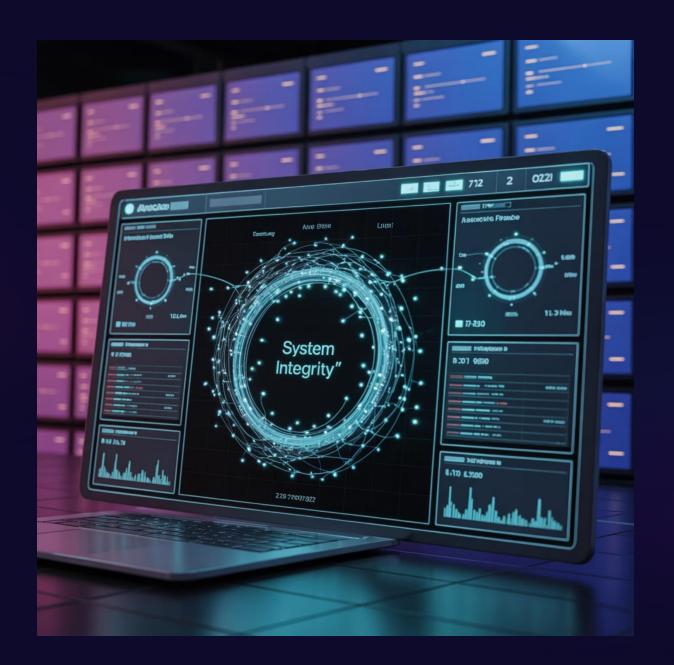
As data systems grow more complex, manual monitoring doesn't cut it anymore.

Al-driven DataOps is emerging for:

- Detecting anomalies in pipelines or data quality
- Predicting failures before they impact users
- Auto-remediating issues restarting jobs, flagging broken schemas

Use cases:

- Flagging unusual drops in daily ingestion
- Auto-blocking downstream jobs if quality degrades
- Suggesting root causes for failed loads



Real-Time Architecture Patterns

Event-driven Ingestion

Using Kafka, Event Hubs, or Kinesis to capture data changes as they happen

Stream Processing

Spark Structured Streaming, Flink, or Materialize for continuous transformation

Micro-batch Updates

For dashboards or ML feature stores needing near-real-time refresh

Low-latency APIs

Serving processed results directly to applications and users

Architectures are shifting from hourly jobs to **millisecond updates** — especially in areas like fraud detection, recommendations, and customer scoring.

Edge Computing and Hybrid Cloud

As more data is generated outside traditional data centers, **edge and hybrid** architectures are becoming essential.

Key Drivers

- Latency when decisions need to happen instantly
- Bandwidth when streaming everything to the cloud is prohibitive
- Compliance when data needs to stay local for regulatory reasons

What's Changing

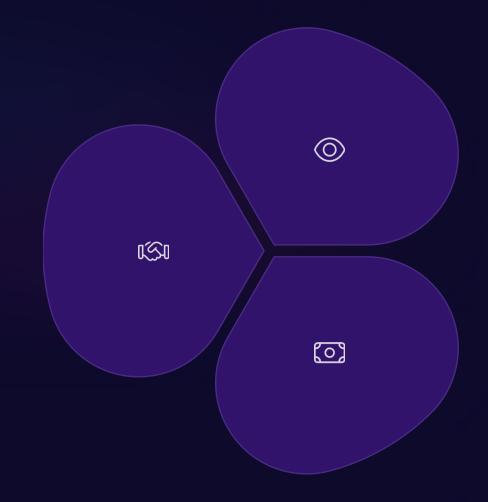
- Al models pushed to the edge
- Metadata synced centrally, processing happens locally
- Hybrid platforms manage policy and identity across locations

Cloud doesn't mean "centralized" anymore. It means "coordinated."

Trends – Data Contracts, Observability, FinOps

Data Contracts

- Agreements between producers and consumers
- Define schema, quality expectations, update policies
- Help prevent broken pipelines and "silent failures"



Data Observability

- Extends monitoring to include freshness and completeness
- Combines metrics, metadata, and pipeline health
- Helps teams debug and trust data at every step

FinOps for Data

- Visibility into cost per query, pipeline, or dashboard
- Push for better cost/performance balance
- Reduces waste and makes consumption transparent

These aren't just trends — they're becoming **baseline expectations** for modern data platforms.

How to Get Ready – Start Small, Design for Scale

Start Small

- Pick one domain team to pilot data product ownership
- Choose one use case to apply active metadata or contracts
- Build incremental value to gain organizational buy-in

Design for Scale

- Use open standards and loosely coupled services
- Build around trust, reuse, and observability
- Document architectural decisions and patterns

Treat Your Platform as a Product

- Invest in onboarding and self-service
- Track adoption, not just pipeline uptime
- Gather and incorporate user feedback

Balance Ambition with Pragmatism

- Don't rebuild everything modernize selectively
- Prioritize patterns over specific tools
- Focus on business outcomes, not technical purity

We're not just building systems. We're shaping how organizations work with data — starting with smart choices today.

Key Takeaways

Modern data architecture isn't about a single tool or platform — it's about how we design for change.

Think Cloud-Native

Not just cloud-hosted – Build for scale, automation, and portability

Decentralize with Purpose

Data Mesh isn't chaos — it's intentional ownership and product thinking

Automate with Metadata

Let your platform handle governance, discovery, and quality behind the scenes

Simplify with Lakehouse

One source of truth that supports BI, ML, and real-time use cases

Prepare for What's Next

Real-time, Al-assisted, edge-aware platforms are becoming the new normal

Modern data platforms don't just support business needs — they help drive them.

What You Can Do Next

Review Architecture

Where are the bottlenecks? What can be automated? What's still dependent on manual handoffs?

Identify Domain Team

Empower them to take ownership of a data product — with the right support and standards.

Invest in Metadata

Start making data
easier to find and
trust through
cataloging, lineage, or
observability.

This isn't a big bang transformation. It's a set of smart steps that make your architecture more adaptive, more useful, and more aligned to your business.

