
Modern Data Architecture 
in the Cloud Era
How cloud-native design, decentralized ownership, and metadata-driven 
automation are shaping tomorrow's data platforms



About Me

Sjoukje Zaal

CTO Data & AI Europe

Insights & Data @Capgemini



Agenda

01

Cloud-Native Architecture

Leveraging elastic computing and modular 
design principles

02

Data Mesh

Decentralizing ownership with domain-
oriented thinking

03

Data Fabric

Connecting systems through metadata 
and automation

04

Data Lakehouse

Unifying analytics and data science workloads

05

Future Trends

Emerging patterns shaping tomorrow's data landscape



Cloud-Native Architecture



What is Cloud-Native? (Data Context)

Cloud-native data architecture means designing data platforms to 
take full advantage of cloud elasticity, automation, and 
modularity — from day one.

This doesn't mean just "lifting" your data warehouse into the cloud. It 
means building:

• Scalable compute clusters that spin up/down as needed

• Serverless data services that react to events

• Modular components connected via APIs or event streams



Benefits of Decoupling Compute & Storage

Cloud-native architectures separate:

• Storage (low-cost, high-availability object storage like S3, ADLS, GCS)

• Compute (on-demand engines like Spark, Presto, BigQuery, Synapse)

This enables you to:

• Run analytics across huge datasets without copying data

• Scale compute workloads independently — based on load, team, or SLA

• Save cost by shutting down idle compute



Real-World Example – 
Containerized Data Platform

The Challenge

Large organization migrating from on-
prem Hadoop to a cloud-native data 
platform

The Solution

• Containerized Spark jobs for batch 
ETL

• Kafka and Event Hubs for real-time 
ingestion

• ML pipelines running in Kubernetes

• Central data lake on object storage

The Results

• Cut data processing costs by 40%

• Reduced pipeline deployment from days to minutes

• Enabled isolated, parallel workloads on shared data



Microservices + Service Mesh for Data Services

In modern data platforms, we break up monolithic ETL or orchestration 
engines into small, composable services:

• Ingestion services

• Transformation engines

• Feature serving

• Lineage tracking

• Cataloging and discovery

A service mesh adds structure to this growing web of services:

• Secure, encrypted communication between sensitive data services

• Fine-grained routing for A/B testing or blue/green pipeline rollouts

• Centralized telemetry and policy enforcement



Cloud Independence – Do's and Don'ts for 
Data Platforms

In data architecture, cloud independence doesn't mean avoiding cloud services — it means designing for flexibility and portability when 
needed.

DO

• Store data in open formats (Parquet, Delta, Iceberg)

• Use containerized runtimes for ML and pipelines

• Keep metadata and governance layers separate from 
vendor tools

DON'T

• Build your data model around proprietary features

• Lock critical business logic into vendor-specific tools

• Sacrifice strategic flexibility for short-term convenience

The goal is not "vendor avoidance" — it's making smart bets with a clear exit plan.



Data Mesh



What is a Data Mesh?

Data Mesh is a response to a problem we've all seen: Centralized platforms become bottlenecks.

Instead of routing all data through a central team or platform, we shift to a domain-oriented approach — where teams own and operate their own data 
products.

Domain Ownership

Business-aligned teams own their data end-to-end

Data as a Product

Each dataset is treated like a product with 
documentation, quality, and lifecycle

Self-serve Platform

Reusable tooling and infrastructure, offered as a 
service

Federated Governance

Standards are enforced across domains, not above 
them

It's not a tool. It's an operating model.



Centralized vs Decentralized Model

Centralized Model

• One data team handles ingestion, pipelines, governance, and reporting
• Bottlenecks grow as data demand scales
• Business teams depend on others to get insights

Decentralized (Mesh) Model

• Each domain owns the full lifecycle of their data products
• Central teams build shared infrastructure
• Data is closer to those who understand it best



Org Structure & Governance Implications

A Data Mesh will fail without organizational alignment.

Team Structure

• Autonomous data teams aligned 
to business domains

• Accountable for quality, 
discoverability, and SLAs

• Blend of business and technical 
skills

Governance Model

• Central governance becomes 
federated

• Standards enforced through 
automated checks

• Enabling teams rather than 
blocking them

Required Elements

• Clear roles and ownership across 
domains

• Defined interfaces for metadata, 
policies, contracts

• Incentives for producing reusable 
data assets

Without this structure, it becomes chaos. With it, you get scale.



Product Thinking Applied to Data

What does "data as a product" mean in practice?

Think about how we build digital products:

• There's a target audience

• Defined interfaces and documentation

• A clear lifecycle and support model

We apply the same thinking to data:

• Who is this data for?

• Is it reliable, versioned, and well-described?

• Can others discover and use it without the original team?



The Cultural Shift
This is where most transformations fail — the culture.

From Service 
Provider

• Reactive to business requests

• Focused on completing tickets

• Success = pipeline works

To Product Owner

• Owning outcomes, not just 
pipelines

• Thinking in SLAs and user 
experience

• Success = others get value from 
your data

A fundamental mindset shift: From "How do we centralize and control?" To 
"How do we scale and enable?"



Data Fabric



Data Fabric vs Data Mesh

Data Mesh

An organizational model that:

• Distributes ownership to domain teams

• Encourages product thinking for datasets

• Pushes responsibility to business domains

The "who" and "how"

Data Fabric

A technology approach that:

• Connects data across environments

• Discovers and manages metadata

• Automates governance and lineage

The "what" and "where"

They're not competing concepts — they solve different parts of the problem. You can (and should) use both together.



Metadata & Active 
Metadata

Passive Metadata

Static information about your data:

• Schema definitions

• Data types

• Source systems

• Business glossary terms

Active Metadata

Dynamic, real-time signals:

• Usage patterns and popularity

• Quality scores and freshness

• Processing history

• Access patterns and data flows

Active metadata turns your platform from a directory into a smart, responsive 
system.



Governance & Lineage Automation
Manual governance doesn't scale. In a modern fabric architecture, governance is automated and embedded.

Real-time Enforcement

Policies applied at ingestion — not 
weeks later

Automatic Protection

Sensitive data auto-tagged with 
access restrictions

End-to-end Lineage

Traceability from dashboard to raw 
source



Reusable Data Products via Composition

Data Fabric helps accelerate innovation by making data modular and 
reusable.

Instead of building each dataset from scratch:
• Compose new data products by linking existing ones
• Think like LEGO blocks — combining sales data with customer 
• profiles and churn predictions

This works because:
• Metadata describes how pieces fit together
• The fabric enforces dependencies and access rules



Data Lakehouse



What is a Lakehouse?

The Lakehouse is an architectural pattern that combines the best of both worlds:

Data Lake Benefits

• Flexibility and scale

• Support for all data types

• Cost-effective storage

• ML-ready format

Data Warehouse Benefits

• ACID transactions

• Schema enforcement

• Time travel capabilities

• Fine-grained governance

This means you can run traditional BI, real-time streaming, and machine learning — all from one place, without copying data across 
systems.



Warehouse vs Lake vs Lakehouse

Feature Data Warehouse Data Lake Data Lakehouse

Schema Strict (predefined) Flexible or none Enforced on write/read

Cost High Low Lower

Data Types Structured only All types All data types

BI Support Strong Weak Strong

ML Support Limited Strong Strong

Governance Built-in Requires tooling Native + open formats

The Lakehouse gives you structure where you need it, and flexibility where you don't — without the overhead of running two platforms 
in parallel.



Delta Lake, Apache Iceberg, Apache Hudi

Lakehouse architectures rely on open table formats that bring structure and performance to object storage.

Delta Lake (Databricks)

• Strong ACID support

• Optimized for Spark

• Popular in enterprise setups

Apache Iceberg (Netflix, 
Apple)

• Engine-agnostic

• Open community-driven format

• Rich metadata capabilities

Apache Hudi (Uber)

• Optimized for real-time ingestion

• Supports upserts

• Used in high-velocity environments

Each has strengths — but they all bring warehouse-like reliability to your lake.



Unified Storage = Fewer Copies, Fresher Data

Traditional Problem

Data sprawl across multiple systems:

• One copy in the lake for ML

• Another in the warehouse for reporting

• A third in a database for operational use

Leading to:

• Sync delays

• Inconsistent results

• High storage and processing costs

Lakehouse Solution

Multiple engines access the same data:

• BI tools query with SQL

• ML pipelines use Spark

• Dashboards stay fresh automatically



Use Case – BI + ML on One Platform

1 Retail Company Challenge

Analyze customer behavior across online and in-store purchases

2

Multiple Use Cases

• Dashboards for marketing teams

• Churn prediction models for data scientists

• Streaming updates from transactions

3

Lakehouse Implementation

• Data lands in Delta/Iceberg tables in object storage

• BI analysts use Power BI directly on that table

• Data scientists train models on the same data

• Real-time updates refresh both simultaneously

No duplication. No silos. One platform serving multiple teams.



What's Next?



AI in DataOps – Monitoring and Remediation

As data systems grow more complex, manual monitoring doesn't cut it 
anymore.

AI-driven DataOps is emerging for:
• Detecting anomalies in pipelines or data quality
• Predicting failures before they impact users
• Auto-remediating issues — restarting jobs, flagging broken schemas
Use cases:
• Flagging unusual drops in daily ingestion
• Auto-blocking downstream jobs if quality degrades
• Suggesting root causes for failed loads

It doesn't replace engineers — it frees them up to focus on improvement instead of firefighting.



Real-Time Architecture 
Patterns

Event-driven Ingestion

Using Kafka, Event Hubs, or Kinesis to capture data changes as they happen

Stream Processing

Spark Structured Streaming, Flink, or Materialize for continuous transformation

Micro-batch Updates

For dashboards or ML feature stores needing near-real-time refresh

Low-latency APIs

Serving processed results directly to applications and users

Architectures are shifting from hourly jobs to millisecond updates — especially in areas like 
fraud detection, recommendations, and customer scoring.



Edge Computing and Hybrid Cloud

As more data is generated outside traditional data centers, edge and hybrid 
architectures are becoming essential.

Key Drivers

• Latency — when decisions need to happen instantly

• Bandwidth — when streaming everything to the cloud is prohibitive

• Compliance — when data needs to stay local for regulatory reasons

What's Changing

• AI models pushed to the edge

• Metadata synced centrally, processing happens locally

• Hybrid platforms manage policy and identity across locations

Cloud doesn't mean "centralized" anymore. It means "coordinated."



Trends – Data Contracts, Observability, FinOps

Data Contracts

• Agreements between producers and 
consumers

• Define schema, quality expectations, 
update policies

• Help prevent broken pipelines and 
"silent failures"

Data Observability

• Extends monitoring to include freshness 
and completeness

• Combines metrics, metadata, and pipeline 
health

• Helps teams debug and trust data at every 
step

FinOps for Data

• Visibility into cost per query, pipeline, or 
dashboard

• Push for better cost/performance balance

• Reduces waste and makes consumption 
transparent

These aren't just trends — they're becoming baseline expectations for modern data platforms.



How to Get Ready – Start Small, Design for 
Scale

Start Small

• Pick one domain team to pilot data product ownership

• Choose one use case to apply active metadata or contracts

• Build incremental value to gain organizational buy-in

Design for Scale

• Use open standards and loosely coupled services

• Build around trust, reuse, and observability

• Document architectural decisions and patterns

Treat Your Platform as a Product

• Invest in onboarding and self-service

• Track adoption, not just pipeline uptime

• Gather and incorporate user feedback

Balance Ambition with Pragmatism

• Don't rebuild everything — modernize selectively

• Prioritize patterns over specific tools

• Focus on business outcomes, not technical purity

We're not just building systems. We're shaping how organizations work with data — starting with smart choices today.



Key Takeaways

Modern data architecture isn't about a single tool or platform — it's about how we design for change.

Think Cloud-Native

Not just cloud-hosted – Build for scale, 
automation, and portability

Decentralize with Purpose

Data Mesh isn't chaos — it's intentional 
ownership and product thinking

Automate with Metadata

Let your platform handle governance, 
discovery, and quality behind the scenes

Simplify with Lakehouse

One source of truth that supports BI, ML, and real-time use cases

Prepare for What's Next

Real-time, AI-assisted, edge-aware platforms are becoming the 
new normal

Modern data platforms don't just support business needs — they help drive them.



What You Can Do Next

Review 
Architecture

Where are the 
bottlenecks? What 
can be automated? 
What's still dependent 
on manual handoffs?

Identify 
Domain 
Team

Empower them to 
take ownership of a 
data product — with 
the right support and 
standards.

Invest in 
Metadata

Start making data 
easier to find and 
trust through 
cataloging, lineage, or 
observability.

This isn't a big bang transformation. It's a set of smart steps that make your 
architecture more adaptive, more useful, and more aligned to your business.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

